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Relying on the fractal character of the largest clusters at criticality, we employ a finite-size scaling analysis
to obtain an accurate phase-diagram of the percolation transition in chains with bond concentration decaying as
a power-law on the form 1/r1+�. For the particular case of �=1, no percolation transition is observed to occur
at a finite dilution, in contrast with the finite temperature Kosterlitz-Thouless transition exhibited in Ising and
Potts chains with inverse square-law couplings. The fractal dimension of the critical percolation cluster is
found to follow distinct dependencies on the decay exponent being numerically fitted by df =0.35+4� /5 for
0���1/2 and df = �1+�� /2 for 1 /2���1. We also compute average mass ratios of the two largest clusters
at criticality.
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I. INTRODUCTION

The phase transition occurring in systems with power-law
decaying interactions is a subject of long-standing interest
due to its unique critical behavior. For d-dimensional sys-
tems with a n-component order parameter and long-range
interactions decaying as 1/rd+�, renormalization group re-
sults as power series expansion in �=2�−d established that
the critical exponents assume d and n-independent values
�usually named “classical” values� for 0���d /2 given by
�=2−�, �=1/� for the correlation function and correlation
length, respectively �1�. For ��2 short-range exponents ap-
ply. In the intermediate regime of d /2���2, the exponents
depend on the lattice and order parameter dimensionality
�nonclassical values� and series expansions up to second or-
der in � have been provided. An interesting feature is that the
correlation function exponent � seems to stick on its classi-
cal value. This has been conjectured to be valid to all orders
in �, although demonstrated only up to second order. In ad-
dition to the theoretical interest in the rich critical behavior
depicted by systems with power-law decaying interactions,
long-range forces and couplings have been used to describe
several interesting physical phenomena such as spin-glass
transitions �2�, criticality in highly ionic systems �3�, the
Kondo problem �4�, Casimir-like effects in strongly corre-
lated systems �5,6�, neural systems modeling �7�, negative
specific heat in a Lennard-Jones-like gas �8�, and complex
networks �9�.

In the particular case of one-dimensional �1D� models
with long-range interactions, there is no transition if ��1.
Therefore, the regime of nonclassical critical behavior is re-
stricted to the range 1/2���1. At �=1/2 the critical be-
havior exhibits logarithmic corrections to the classical one.
The opposite case of �=1 has been the subject of intense
investigations �10–13�. In models where the local variables
have a continuum of states, the critical temperature vanishes
continuously as �→1 from below �14�. On the other hand,
1D models with inverse square-law interactions and local
variables having a finite number of states display an order-

disorder transition at a finite temperature. This transition has
been shown to belong to the class of topological phase tran-
sitions similar to the Kosterlitz-Thouless �KT� one exhibited
by the XY two-dimensional model �10�. The correlation
length has an exponential divergence as approaching the
critical temperature and the order parameter jumps discon-
tinuously to zero. The q-state Potts model is a very instruc-
tive example where a KT transition is expected to occur for
any q�2. Although a preliminary real space renormalization
group result indicated that the transition temperature Tc
should be the same for any value of q �15�, more recent
numerical simulations have shown that Tc is a decreasing
function of the number of states q �13�. For slower decaying
interactions ���1�, the transition can become a first order
one �16�, with the threshold value �c�q��1 for all q �17�.

The corresponding counterpart model to study the geo-
metric percolation transition in randomly diluted systems
with power-law decaying bond concentration p�r��1/r1+�

was introduced more than two decades ago �18�. It was ini-
tially conjectured that an infinite cluster would be present for
any finite bond concentration in the case of ��1 �18�. This
conjecture was readily shown to fail and that no percolation
cluster could exist for p�1/2	���, where 	��� is the
Reimann zeta function �19�. The existence of a transition
between a percolating and a nonpercolating regime was dem-
onstrated for ��1 �20�. In the limiting case of �=1, it was
argued the occurrence of an intermediate phase with slowly
decaying correlations and a discontinuity of the percolation
density �12,21�. More recently, the scaling behavior of the
shortest-path distance �22,23� and of the random walk prob-
lem �24� in long-range percolation have being analyzed.
However, except by the naive numerical estimate by Rego et
al. �25�, no accurate phase diagram for the percolation tran-
sition in this model has been obtained so far.

In this work, we will exploit the fractal scaling behavior
of the largest clusters at the percolation threshold to obtain
precise estimates of the critical point of the long-range 1D
percolation problem. The scaling analysis will be based on

PHYSICAL REVIEW E 72, 016116 �2005�

1539-3755/2005/72�1�/016116�5�/$23.00 ©2005 The American Physical Society016116-1

http://dx.doi.org/10.1103/PhysRevE.72.016116


the existence of effectively many infinite clusters at the tran-
sition, all of them sharing the same fractal dimension
�26,27�. This feature allows for the use of average mass ra-
tios as zero-exponent scaling variables to locate the critical
point from simulations on relatively small lattices �28�. This
strategy was successfully applied to the percolation problem
in d-dimensional hypercubic lattices providing accurate esti-
mates of the percolation threshold up to d=7 as well as sev-
eral relevant mass distribution functions associated with the
two largest clusters �29�. Here, besides providing the critical
line pc���, we will also report on the critical average mass
ratios of the second largest and largest clusters
�M2 /M1� , �M2� / �M1�, as well as on the fractal dimension of
the largest cluster df���. At extremal values of the power-law
decay exponent �, an alternative numerical renormalization
group will be used to refine the critical parameters estimates.

II. LONG-RANGE PERCOLATION MODEL AND
FRACTAL SCALING

We will consider the 1D long-range percolation model as
a closed chain with L sites. For each pair of sites �i , j�, the
probability of having a bond connecting them is given by
p�i , j�= p /r1+�, where r is the smallest distance between this
pair of sites and p is the first-neighbors bond concentration.
When only short-range connections are allowed, an infinite
cluster containing a finite fraction of the chain does not exist
for any p�1. This picture remains valid whenever the
power-law exponent ��1. For ��1 an infinite cluster
emerges above a critical concentration pc��� due to the high
connectivity induced by the long-range couplings. For
��0 there will be a spanning cluster with a finite density for
any nonvanishing value of p. Therefore, a continuous perco-
lation transition can occur only in the regime of 0���1.

An extended version of the above percolation problem
was studied in Refs. �12,19–21� on which p�i , j�=
 /r1+� for
r�1 while p refers only to the first neighbors bond concen-
tration. In the region of 0���1 the extended model also
presents a continuous percolation transition. For the limiting
case of �=1, it has been rigorously proved that there is a
discontinuity in the infinite-cluster density occurring at

c�p��1, with 
c approaching to unity as p→1. The pres-
ently studied percolation problem corresponds to the particu-
lar case 
= p�1 of the above extended model and, as such,
only can fully probe the continuous transition that takes
place in the regime of 0���1. However, we will also in-
vestigate the �=1 case aiming to characterize the scaling
behavior in the nonpercolating regime at the vicinity of the
asymptotic discontinuous percolation transition which sets
up as p→1. In what follows we will continue referring to p
as the first neighbors bond concentration, but it shall be kept
in mind that it affects the strength of all bonds.

The distribution of cluster masses at the percolation
threshold has usually been explored in order to obtain new
properties at the critical point �30–33�. An interesting feature
is observed when the clusters formed at criticality are ranked
in decreasing order of size. In the regime of large system
sizes, the average mass of the kth largest cluster scale as
�Mk��Ldf, with the same fractal dimension for any rank

�26,27,30,34�. Specifically, the second largest cluster is pro-
portional in mass to the largest cluster at the percolation
threshold. The average ratio between the masses of the larg-
est and second largest clusters has been shown to be scale
invariant at criticality, with its value depending on the lattice
geometry and boundary conditions �28–30,35�.

According to the finite size scaling hypothesis, the aver-
age size of the largest cluster near the percolation threshold
scales as �M1��Ld−
/�. The same scaling behavior stands for
�M2� �26,30�. As a consequence, the average mass ratio
�M2 /M1� behaves as a zero exponent critical quantity scaling
as

�M2/M1� = f��p − pc�L1/�� �1�

with the scaling function f�−��=1 and f�+��=0. A similar
scaling relation also holds for �M2� / �M1�. According to the
above scaling behavior these ratios are size independent at
the critical percolation threshold. Below the percolation
threshold, the two largest clusters are similar in size and the
above mass ratios approach to unity as the system size in-
creases. On the other hand, the largest cluster predominates
above the critical concentration and the mass ratio vanishes
in the infinite size limit. Therefore, curves obtained from
distinct system sizes of either one of the above cluster mass
ratios will intercept at a common point when plotted as a
function of the bond concentration �28,29�.

As the coupling power-law exponent �→0, the number
of connecting bonds is reduced �although with a longer-range
character�. In this regime, the incipient percolation clusters
have smaller sizes. Therefore, finite-size scaling analysis
based on the joint properties of the largest and second largest
clusters shall become less confident than one based solely on
the scaling of the largest cluster. This difficulty reflects the
larger corrections to scaling presented by higher ranked clus-
ters. To refine the estimate of critical parameters in this re-
gime, a numerical renormalization group can be used based
on the behavior of the following set of auxiliary functions:

g�L,L�,p� = ln�M1�L,p�/M1�L�,p��/ln�L/L�� . �2�

These are derived solely from the size of the largest cluster
and, according to the finite-size scaling hypothesis, shall in-
tercept at a common point g�L ,L� , pc�=df for any pair of
sizes �L ,L��, with a possible small spread due to corrections
to scaling. This numerical renormalization group scheme is
also expected to be more accurate at very low dilutions due
to the reduced size of the second largest cluster in this re-
gime. The accuracy of such phenomenological renormaliza-
tion based on Monte Carlo data was firstly demonstrated by
investigating site percolation in a simple cubic lattice �36�.

III. FINITE-SIZE SCALING: PHASE DIAGRAM AND
FRACTAL DIMENSION

In our simulations, we considered chain sizes ranging
from L=200 up to L=3200. For a given value of the decay
exponent �, we measured the average value �over 40 000
random bond distributions� of the size of the two largest
clusters and the average ratio between their sizes as a func-
tion of the first neighbors concentration p.
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The critical first neighbors concentration pc��� was ob-
tained from the interception point of the average mass ratio
�M2 /M1� measured for distinct chain sizes, as well as from
the interception point of the set of auxiliary functions
g�L ,L� , p� obtained from the numerical renormalization
analysis of the largest cluster size. A representative plot is
shown in Fig. 1 for the particular case of �=0.6. Both meth-
ods provide roughly the same estimate for the critical con-
centration pc��=0.6�=0.327�1�. In either case, the intercep-
tion point exhibits a very small spread which indicates that
corrections to scaling are negligible for the system sizes
simulated at this specific value of the power-law decay
exponent �.

The above analysis was employed to obtain the critical
line pc��� for the full range 0���1. Our results are de-
picted in Fig. 2. As expected, the estimates are slightly dis-
tinct for extremal values of �. The one obtained solely from
the scaling behavior of the largest cluster mass is to be con-
sidered the more reliable in these regimes due to larger cor-
rections to scaling presented by the size of the second largest
cluster at weak and strong dilutions. We obtained that the
critical concentration continuously grows towards pc�1�=1.
Therefore, the largest cluster remains finite for any first-
neighbor dilution in the case of square-law decaying bond
concentrations. This fact is consistent with previous analyti-
cal arguments demonstrating that a percolating phase can
only be observed in the extended long-range percolation

model for 
�1 �21�. It is worth mentioning that the esti-
mated data for the critical concentration follows closely a
simple power law 1− pc�����1−� �dashed line in Fig. 2�,
particularly for � close to unity.

In order to characterize the scaling behavior of the bor-
dering case �=1, we analyzed the finite-size dependence of
the normalized average size of the largest cluster at the vi-
cinity of p=1. We found that, for a weak dilution of first-
neighbors couplings, �M1� /L decreases very slowly as the
chain size increases, indicating a slow logarithmic conver-
gence to the thermodynamic limit. Indeed, our data from
distinct chain sizes were collapsed into a universal scaling
function in the form

�M1�/L = f��1 − p��ln L�1/2� �3�

as shown in Fig. 3. This scaling law supports the absence of
an infinite cluster at finite dilutions in the limit L→�, i.e.,
�M1�p�1,L→��� /L→0. On the other hand, �M1�p=1,L
→��� /L=1. A discontinuity on the percolation density at p

FIG. 1. �a� �M2 /M1� and �b� g�L ,L� , p� versus p for �=0.6.
Data were obtained after a configurational average over 40 000
samples. Error bars are much smaller than symbols size. The com-
mon point of distinct curves in either �a� or �b� determines pc. The
scale invariant average mass ratio at percolation can also be ex-
tracted from �a� whereas the fractal dimension of the critical perco-
lation cluster is given by g�L ,L� , pc� from �b�.

FIG. 2. The estimated phase diagram for the long-range perco-
lation model with power-law decaying bond concentrations. Critical
points were estimated from the scaling behavior of the average
cluster mass ratio �squares� as well as from the numerical renormal-
ization of the largest cluster mass �circles�. The dashed line repre-
sents the curve 1− pc�����1−� which fits the data well especially
for � close to unity.

FIG. 3. Collapse of data from distinct chain sizes for the bor-
dering case �=1. The normalized largest cluster size follows a uni-
versal function of �1− p��ln L�1/2, thus indicating the absence of an
infinite cluster at finite dilutions and the exponential growth of the
average largest cluster size as p→1.
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=1 is natural to occur even in the nearest-neighbor percola-
tion model, although in this case the scaling form is trivial
�37�. The above finite-size scaling indicates a nontrivial
Kosterlitz-Thouless-like transition. Therefore, the reported
discontinuity of the percolation density at p=1 is reminiscent
of the discontinuous percolation transition taking place in the
extended long-range percolation model at 
= p=1 �21�. The
logarithmic scaling variable reveals that the average largest
cluster size grows exponentially as p→1 once the character-
istic cluster size scale as e�1 − p�2

. This last feature is consis-
tent with a diverging correlation length exponent for this
asymptotic percolation transition.

The fractal dimension df of the critical percolating cluster
was measured from the numerical renormalization scheme.
The � dependence of df is reported in Fig. 4. It is particularly
interesting to notice that, for ��1/2, it is well fitted by
df���= �1+�� /2 within our numerical accuracy. Using the
scaling relations df =d−
 /� and 2−�=d−2
 /�, the above �
dependence of df implies �=2−�. This is the classical rela-
tion predicted by renormalization group calculations for sys-
tems with power-law decaying interactions �1,38�. However,
the pure geometric percolation transition here studied devi-
ates from this classical relation for slowly decaying bond
concentrations. For ��1/2, the fractal dimension appears to
follow a distinct linear dependence df =0.35+4/5�. The case
�=1/2 shows a small deviation from either of the above
trends, which may be due to logarithmic corrections to scal-
ing not considered in the present study.

We have also measured the critical average mass ratios
�M2 /M1� and �M2� / �M1� �see Fig. 5�. For slowly decaying
bond concentrations at which the critical state is strongly
diluted, the largest and second largest clusters at criticality
are very similar in size. On the other hand, close to the bor-
der case �=1, the critical state is only weakly diluted and the
largest cluster is much larger than the second largest one,
although they share the same fractal dimension. The fact that
�M2 /M1�� �M2� / �M1� reflects the fluctuations of the cluster
mass ratio over distinct bond distributions.

IV. CONCLUSIONS

In summary, we have reported a detailed finite-size scal-
ing analysis of the percolation transition on linear chains
with power-law decaying bond concentrations p�r�= p /r1+�.
Exploring the fractal behavior of the largest and second larg-
est clusters at the percolation threshold, we obtained accurate
estimates for the critical percolation threshold and cluster
mass fractal dimension for the range 0���1. We found
that pc��=1�=1 and, therefore, no infinite cluster exists in
the thermodynamic limit for square-law decaying bond con-
centrations for any finite first-neighbor dilution. Our finite
size scaling analysis at the vicinity of pc��=1�=1 indicates
that, while the nature of the transition in the present perco-
lation model is still KT-like, there is also some difference
between our geometrical model and the finite-temperature
KT transitions exhibited by 1D thermal systems with 1/r2

interactions. However, it is consistent with the predicted dis-
continuity of the percolation density �21�. For the regime 0
���1, we determined the critical average ratio between the
masses of the two largest clusters. Close to the border case of
�=1 the largest cluster becomes much larger than the second
largest, resulting in a slow convergence to the thermody-
namic behavior as the onset of the short-range behavior ap-
proaches. The fractal dimension of the critical percolation
cluster was found to exhibit two distinct regimes for � above
and below 1/2. For ��1/2 it was found to coincide with the
classical prediction for the critical exponents of systems with
power-law decaying interactions, although these are not, a
priori, expected to apply for the pure geometric transition. It
would be valuable to have these two regimes reproduced by
renormalization group arguments tailored for this long-range
percolation problem. The present finite-size scaling analysis
can also be employed to characterize the rich phase diagram
depicted by the extended version of the long-range 1D per-
colation problem with distinct parameters for the short- and
long-range connections. This study can bring important new
information about the critical behavior, especially for the
border case of square-law decaying bond concentrations. We
hope to report on these questions in a future communication.

FIG. 4. The estimated fractal dimension of the critical percola-
tion cluster as a function of the decay exponent �. For ��1/2 the
data are well fitted by df���= �1+�� /2, which is similar to the clas-
sical behavior predicted by the renormalization group for systems
with power-law decaying interactions. For slower decaying bond
concentrations, there are deviations from this relation. The numeri-
cal trend points towards df���1/2�=0.35+4� /5. The dashed bro-
ken line represent the above linear relations.

FIG. 5. The critical average mass ratios �M2 /M1� and
�M2� / �M1� and a function of the decay exponent �. They approach
to very small values at the border of the long-range regime as the
critical percolation clusters become dense at the onset of the short-
range regime.
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